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Deep Analysis of Mitochondria and 
Cell Health Using Machine Learning
Atena Zahedi1,3, Vincent On2, Rattapol Phandthong3, Angela Chaili3, Guadalupe Remark3, 
Bir Bhanu   1,2,4 & Prue Talbot1,3

There is a critical need for better analytical methods to study mitochondria in normal and diseased 
states. Mitochondrial image analysis is typically done on still images using slow manual methods 
or automated methods of limited types of features. MitoMo integrated software overcomes these 
bottlenecks by automating rapid unbiased quantitative analysis of mitochondrial morphology, texture, 
motion, and morphogenesis and advances machine-learning classification to predict cell health by 
combining features. Our pixel-based approach for motion analysis evaluates the magnitude and 
direction of motion of: (1) molecules within mitochondria, (2) individual mitochondria, and (3) distinct 
morphological classes of mitochondria. MitoMo allows analysis of mitochondrial morphogenesis in 
time-lapse videos to study early progression of cellular stress. Biological applications are presented 
including: (1) establishing normal phenotypes of mitochondria in different cell types; (2) quantifying 
stress-induced mitochondrial hyperfusion in cells treated with an environmental toxicant, (3) 
tracking morphogenesis in mitochondria undergoing swelling, and (4) evaluating early changes in 
cell health when morphological abnormalities are not apparent. MitoMo unlocks new information on 
mitochondrial phenotypes and dynamics by enabling deep analysis of mitochondrial features in any 
cell type and can be applied to a broad spectrum of research problems in cell biology, drug testing, 
toxicology, and medicine.

Mitochondria are dynamic organelles capable of regulating cell fate, homeostasis, survival, and disease in eukar-
yotic cells1–3. Mitochondrial phenotypes (morphology, dynamics, and organizational patterns) vary significantly 
in different cell types. During fusion and fission4, mitochondria transition between morphological classes that 
include small puncta, tubes, networks, and “donuts” or rings5,6. These morphologies are related to the meta-
bolic state and bioenergetics of the cell and vary during processes such as cell division and differentiation3,7. 
Mitochondria have an intrinsic ability to sense their state of health, and when stressed, induce compensatory 
quality-control mechanisms, such as stress-induced mitochondrial hyperfusion (SIMH) or fission and degra-
dation of damaged mitochondria (mitophagy)6,8–10, making them excellent organelles for evaluating cell health. 
Moreover, mitochondrial morphology and dynamics are altered in common neurodegenerative diseases, such 
as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s 
disease (HD)11 and may vary within subclasses of diseases such as cancer, diabetes, myopathies and metabolic 
diseases7,11–14. For example, changes in mitochondrial morphology, mainly fragmentation, and abnormal dynam-
ics in axonal transport in neurons have been reported in HD patients11. In diseases such as cancer, mitochondria 
phenotypes have been shown to vary between tumors, and used to classify types of cancer15,16.

Because of their importance in homeostasis, stress, and human disease, there is need for technologies to 
analyze and quantify changes in mitochondrial morphology and dynamic behavior. Time-consuming manual 
protocols17 are being replaced by software that provides automated analysis of mitochondrial features, making 
rapid high content analysis feasible. While mitochondrial analysis software is continually evolving, some existing 
programs have limitations with respect to accessibility. Some require that users know programming languages 
and have access to commercial image processing software not routinely available in all labs18,19. In this paper, we 
introduce MitoMo, which is open-source, provides a user-friendly graphical user interface (GUI) that does not 
require programming knowledge, can easily be adapted to any laboratory, and is flexible in allowing users to 
import pre-segmented images from any image processing software.
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Because of limitations in existing software, there is an unmet need for software that can perform an inte-
grated multi-feature analysis of morphology, motion, texture, and morphogenesis. While most software provide 
segmentation, feature extraction, and classification modules, they are limited in their image processing15,20 and 
types of feature analysis15,16,18–23. Our software provides users with additional pre-processing (histogram match-
ing, tophat) and post-segmentation (declumping, morphological operations) steps, which significantly improve 
the accuracy of segmentation. Most software use one type of classification algorithm (typically a decision tree 
type)15,18,23 and are capable of only mitochondrial morphology analysis or cell classification. MitoMo provides 
users with multiple classification algorithms and performs both morphological and cell health classification. 
MitoMo can perform on multiple scales, enabling the study of individual mitochondria, patches of mitochondria, 
or mitochondrial populations in entire cells. It also divides feature data across the morphological classes of mito-
chondria to investigate the contribution of each class to an experimental stimulus or disease.

Mitochondrial morphology and dynamics are both coupled to mitochondrial function12,24, stress8,9,25, and dis-
ease1,11,13,14. Previous software have studied motion of individual mitochondria, such as their movement toward 
regions of energy demand26. Our novel intensity flow method27 can study sub-organelle motion, which relates 
to the flow of molecules within the mitochondria, a type of motion has rarely been studied. Motion analysis was 
further expanded in MitoMo to include directionality with respect to any cellular structure. This reveals organi-
zational changes of mitochondria inside the cell, which correlate to changes in energy demand or association with 
other cellular structures (e.g., endoplasmic reticulum, autphagosomes, etc). Lastly unlike other mitochondrial 
based software, MitoMo can be used to analyze video data, thereby providing morphological information on 
mitochondrial morphogenesis during cell differentiation, toxicant treatment, or disease progression.

Our purpose is to introduce MitoMo an open-source, user-friendly software that integrates multiple feature 
types and goes beyond existing software to enhance mitochondrial analysis and cell health classification. Several 
applications of the MitoMo are presented to demonstrate its broad potential in cell and medical research, drug 
development, and toxicology.

Results
MitoMo integrated pipeline.  MitoMo is an automated image/video processing and machine-learning soft-
ware that is designed to work with fluorescent images. In the MitoMo pipeline (Fig. 1), still or time-lapse live-cell 
videos were collected from three different cell types that were transiently or stably transfected with MitoTimer, a 
mitochondria-targeted fluorescent reporter that enables quantification of mitochondrial protein oxidation. Any 
mitochondrial-targeted dye or reporter could be used with MitoMo to quantify functional readouts. Based on 
user preference, mitochondria can be segmented directly using global or adaptive thresholding and de-clumping 
procedures in MitoMo, or alternatively, images previously segmented with other software, such as CellProfiler28, 
can be imported into the MitoMo graphical user interface (GUI). To train MitoMo for classification of mitochon-
drial morphology, features (listed in Methods) were extracted from individual punctate, networked, or swollen 
mitochondria. Segmented mitochondria were then automatically classified using machine-learning K-nearest 
neighbor (KNN)29 and Naïve Bayes algorithms30. In the computational analysis of motion, the density of fluo-
rescently-tagged mitochondrial proteins was assumed to be proportional to the pixel intensity. By computing 
the change in intensity between adjacent frames, the flow of fluorescently-tagged mitochondrial proteins can be 
estimated and summed up at the individual pixel level, mitochondrial level, and whole-cell level. The extracted 
features are used to generate the motion gradient vectors at each individual pixel, and the net sum of the gra-
dient vectors (magnitude) and their direction (orientation) can be plotted as outputs for the motion analysis. 
Texture features can also be used to investigate the organizational complexity (dense versus porous phenotype) 
and compactness of the mitochondria within cells. MitoMo multiplexes extracted features and machine learning 
methods to allow for high-throughput, unbiased, and time/resource-saving characterization and classification of 
mitochondrial health in any cell type.

Validation of MitoMo.  Segmentation and morphological classification, as performed by MitoMo, were rig-
orously validated. To assess accuracy, segmentation was manually drawn using ImageJ (Fig. 2A) and compared to 
segmentation performed by MitoMo (Fig. 2B). The percent overlay of the ground-truth segmentation versus the 
segmentation derived with MitoMo and/or CellProfiler was not statistically different (Fig. 2C). Morphological 
classification ground-truth was compared to the software’s automatic classification (2D,E). Classification using 
eight features (Area, Major Axis, Minor Axis, Solidity, Perimeter, Max Radius, Median Radius, Integrated 
Intensity) resulted in 88% accuracy with Naïve Bayes and 80% accuracy using KNN with five neighbors on the 
training set. Classification accuracies were 89% with Naïve Bayes and 91% with KNN on the testing set (Fig. 2F).

MitoMo’s motion algorithm was validated and compared against optical flow31, which is a representation of 
the apparent motion of objects, surfaces, edges, and pixels in an image. Optical flow is commonly used for motion 
estimation to describe the transformation of one frame to another. In the calculation of optical flow, a major 
assumption is a brightness constraint that requires the appearance or brightness pattern of an object to be con-
stant over a delta change in time32. MitoMo does not have this constraint because it estimates the change of inten-
sity between frames and not the motion of specific pixels. To validate our motion analysis, synthetic motion data 
of various shapes were generated (Fig. 2G–L). For both methods, all generated vectors are summed to produce a 
single vector estimating the motion of the object. In the table in Fig. 2M, MitoMo had angle accuracies ranging 
from 83 to 100% and magnitude accuracies ranging from 82 to 83%. MitoMo’s angle and magnitude estimation 
performed as well or better than the Lucas-Kanade optical flow method in all cases except the uneven intensities, 
which better satisfy the brightness assumptions of optical flow. Two-tailed t-tests and Chi-squared tests (in cases 
with no variance) were performed for each comparison, revealing statistically significant improvements in accu-
racy with MitoMo’s motion analysis in most cases (Fig. 2M). Further details are provided in the Supplementary 
Data #2.
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Establishing baseline phenotypes of mitochondria in healthy cells.  We define phenotype to 
incorporate mitochondrial morphology, motion, texture, and morphogenesis. The phenotype and number of 
mitochondria in a cell depends on the metabolic requirements of the cell, and number may vary from one to 
thousands across different cell types7. MitoMo was first used to establish the mitochondrial phenotypes in three 
healthy cell types from two species: mouse neural stem cells (NSC), human lung cancer cells (A549), and human 
primary lung fibroblasts (hPF) (Fig. 3A–C). The cells were transfected with the MitoTimer reporter and imaged 
live 24 hours later. While all cell types had punctate, networked, and swollen mitochondria, the percentages of 
each class of mitochondrion were significantly different in each cell type (Fig. 3D,E). Figure 3E summarizes the 
p-values for each of the morphological groups compared across the different cell types using a 1-way ANOVA 
followed by Tukey’s post hoc test.

Figure 1.  Overview of MitoMo software pipeline. Video frames of labeled mitochondria were captured and 
loaded into the MitoMo software. The videos were segmented and declumped, and 21 morphological, intensity, 
texture, and motion features were extracted for each frame. The selected features were then fed into a previously 
trained library of the three mitochondrial morphologies (punctate, networked, and swollen). The segmented 
mitochondria from the test videos (frames) were automatically morphologically classified using K-nearest 
neighbor (KNN) and Naïve Bayes. The resulting data were plotted into graphs, depicting the percentage of 
punctate, networked, and swollen mitochondria. The software can also perform motion analysis by computing 
the magnitude and orientation of the gradient vectors, and the net or directional motion can be plotted for 
the population of mitochondria in each cell. Motion analysis can be performed for the entire mitochondrial 
population within a cell, individual mitochondria, and/or morphological classes of mitochondria. Texture 
features, which are indicative of mitochondrial complexity and organization, can be extracted, Validation 
was performed to ensure accuracy of the segmentation, morphological classification, and motion analysis. 
Extracted features can be combined to perform health classification during low-level stress that is otherwise not 
detectable.
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Figure 2.  MitoMo validation and comparison of our motion analysis to optical flow. Segmentation validation: 
(A) Manually drawn segmentation (green) using ImageJ was compared to (B) segmentation performed by 
MitoMo. (C) The segmentation accuracy (area of overlaps) of the manually labeled versus automatically 
segmented mitochondria (MitoMo and CellProfiler) were not significantly different using one-way ANOVA 
with Dunnett’s post hoc test. (D–E) The morphological classification was validated by comparing manually 
labeled mitochondria (D) against automatic classification (E). (F) There was up to 88% accuracy with Naïve 
Bayes and 80% accuracy with KNN in the automatic classification of mitochondrial morphology in 1761 trials 
using the training data. There was up to 89% accuracy with Naïve Bayes and 91% with KNN in the automatic 
classification of the test set. (G–L) Images showing motion analysis validation for both magnitude (blue, green 
cyan images) and direction (images with red arrows). Each magnitude image is a synthetic image of unique 
shape and change in intensity overlaid with a motion vector. Blue is object from frame 1, green is object from 
frame 2, and cyan is overlap of the two frames. Column 1 in (G–L) shows summed MitoMo vector (indicated 
by arrow) overlaid onto color coded image. Column 2 is the normalized difference image with MitoMo motion 
vectors. Column 3 shows the summed Lucas-Kanade vector (indicated by arrow) overlaid onto the color-
coded images. Column 4 is the normalized difference image with Lucas-Kanade motion vectors. (G) Solid dot 
with no change in intensity. (H) Dot with uneven intensity. (I) Disc with uneven intensity that fades to half 
the brightness by the second frame. (J) Solid rectangle with no change in intensity. (K) Rectangle with uneven 
intensity. (L) Rectangle with uneven intensity that fades to half the brightness by the second frame. (M) Table 
summarizes the accuracy of angle and magnitude for MitoMo versus optical flow. The angle and magnitude 
accuracies were statistically compared using t-test and Chi-squared tests, and the more accurate software was 
highlighted in yellow.
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The magnitude of motion of all the mitochondria in the three cell types was calculated (Fig. 3F) and compared 
statistically across cell types using a 2-way ANOVA with Tukey’s multiple comparisons test. Motion in the A549 
cells and hPFs, which had mainly networked mitochondria, was similar, while the punctate mitochondria in the 
NSCs had significantly elevated motion. The increase in motion in these healthy NSCs is directly correlated with 
mitochondrial morphology.

To further assess the organization of mitochondria in different cell types, texture features were analyzed. The 
mean fractal dimension was computed to measure the level of mitochondrial complexity at the whole-cell level 
(Fig. 3G), using a 1-way ANOVA with Bonferroni’s post hoc test. In NSCs, the small punctate mitochondria are 
slightly variable in shape and not evenly spaced, which increased complexity and resulted in a higher fractal 
dimension. Similar to NSCs, the fractal dimension was also high in hPFs, since the highly meshed networks create 
a higher level of complexity. In contrast, the mesh-work of mitochondria in A549 was more uniformly spaced, 
resulting in the lowest mean fractal dimension value.

Another texture feature, lacunarity, was compared across the three cell types using a 1-way ANOVA with 
Bonferroni’s post hoc test (Fig. 3H). Patterns having more or larger gaps or more heterogeneity generally have 
high lacunarity. This analysis showed significantly higher lacunarity in mNSC than in the other two cell types. 
Fractal dimension mean versus lacunarity values were plotted for all cell types, revealing distinct, well-separated 
clusters between the three cell types (Fig. 3I). This shows that texture features are another excellent means of phe-
notyping mitochondria in different cell types and by extension in different experimental conditions.

MitoMo detects both directional motion and changes in direction.  MitoMo has the ability to com-
pute directional motility, in which a reference point, such as the nucleus is chosen, and changes in direction are 

Figure 3.  Analysis of mitochondrial phenotype (morphology and texture) in three cell types. (A–C) 
Mitochondrial morphology in NSC, human A549 lung epithelial cells, and hPF during normal culture 
conditions. (D) A549 and hPF cells had significantly more networked mitochondria than the NSCs. (E) The 
table summarizes the p-values for each of the morphological groups compared across the different cell types 
in (D) (1-way ANOVA with Tukey’s multiple comparisons test). (F) Total motion analysis showed a significant 
increase in mitochondrial motion in the NSC compared to the other two cell types, which had similar motion 
profiles (2-way ANOVA with Tukey’s multiple comparisons test). (G) Mean fractal dimension analysis showed 
a lower complexity level in the A549 mitochondria. (H) Lacunarity analysis showed a denser mitochondrial 
organization in the NSCs, which contain a high number of punctate mitochondria. Texture data were analyzed 
using a 1-way ANOVA with Bonferroni’s multiple comparisons test. (I) Fractal dimension mean plotted versus 
lacunarity for the three cell types showed three distinct clusters.
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obtained. To demonstrate the ability of MitoMo to detect motion features, NSC were treated with nocodazole and 
cytochalasin D to disrupt the microtubules and actin cytoskeleton, respectively, and 10 second live videos were 
collected (Fig. 4A,B). Motion analysis of the entire mitochondrial population was conducted before treatment 
and 4 and 5 min after treatment. The directional component of the motion away or towards the nucleus was plot-
ted over time (video frames) revealing fluctuating localized motion in the control videos (before treatment) and 
arrested movement 4 and 5 min after treatment (Fig. 4C). The net sum of motion over all frames when quantified 
showed a decrease in motion after 4 and 5 min of treatment (Fig. 4D).

Morphology and motion analysis following stress-induced mitochondrial hyperfusion (SIMH).  
Environmental toxicants can have a negative impact on mitochondria and alter their morphology33. To test the 
ability of MitoMo to detect changes in mitochondrial morphology and motion, NSC were treated with aerosol 
from an electronic cigarette that caused SIMH (Fig. 5A,B). The shift from a punctate to networked morphology 
was first confirmed using the morphology classifier in MitoMo (Fig. 5C). A statistically significant increase in net-
worked mitochondria was detected in the hyperfused group using an unpaired two-tailed t-test. When examined 
microscopically, the hyperfused mitochondria did not have much motion. However, MitoMo motion analysis of 
the entire mitochondrial population showed a significant increase in motion in the electronic cigarette-treated, 
hyperfused mitochondria (p = 0.0014 for Chi-squared analysis with a 95% confidence interval) (Fig. 5D). This 
pixel-based analysis method is particularly powerful since it is otherwise not possible to quantify motion in the 
hyperfused mitochondria, which are no longer individual trackable objects. When motion was analyzed using 
unpaired two-tailed t-test at the level of individual mitochondria and then averaged, a significant increase in 
motion was observed in the hyperfused group (Fig. 5E).

To further isolate the increased motion to the hyperfused class, MitoMo was used to compare motion hetero-
geneity in morphological classes of mitochondria. The punctate population exhibited the least motion, followed 
by the swollen, and the networked class (Fig. 5F). When analyzed using a 2-way ANOVA with Sidak’s multiple 
comparison test, the magnitude of motion was greater in the networked mitochondria of the hyperfused group 
than in the untreated control (Fig. 5F). This increased movement could be due to the intermixing of mitochon-
drial membrane proteins, which is consistent with occurrence of SIMH to rescue damaged mitochondria34.

Figure 4.  Directional motion analysis in living cells. (A,B) Images collected before and 4–5 minutes after the 
addition of nocodazole and cytochalasin D to destabilize the cytoskeleton. (C) MitoMo computed random 
localized motion in the control videos before treatment and showed that movement was arrested after 
treatment. (D) The net sum of motion was quantified over the entire video, showing a decrease in motion after 4 
and 5 minutes.
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Figure 5.  Analysis of stress-induced mitochondrial hyperfusion (SIMH) in NSCs. (A,B) Control NSC 
had primarily punctate mitochondria, whereas NSC treated with a tobacco product aerosol exhibited 
SIMH. Consecutive frames taken over 15 seconds show an enlarged section of live cells over time; arrows 
show examples of localized motion in the control and the translocation of hyperfused mitochondria. 
(C) Morphological analysis confirmed a significant shift towards the networked (hyperfused) morphology 
in the treated group. An unpaired two-tailed t-test was used when each morphological group was compared 
between the control and the hyperfused mitochondria (D) Motion analysis at the whole cell level showed an 
increase in motion in the hyperfused, treated mitochondria (p = 0.0014 using Chi-squared statistical analysis 
with a 95% confidence interval). (E) Motion analysis of individual networks of hyperfused mitochondria 
revealed a similar increase in motion (unpaired two-tailed t-test). (F) Motion analysis at the morphological 
class level showed that this increase in motion was due to the networked subgroup (2-way ANOVA with Sidak’s 
multiple comparisons test). (G) Magnitude of motion of the networked subgroup was greater than the control 
group over time. (H) Mean standard deviation of intensity analysis was performed for the three morphological 
classes in the hyperfused condition, showing that the swollen subgroup had the highest fluctuations in intensity 
(1-way ANOVA with Bonferroni’s multiple comparisons test).
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When the magnitude of motion of the networked subgroups was assessed over time, the hyperfused mito-
chondria had a consistently higher level of motion than mitochondria in control cells (Fig. 5G). To determine 
how intensity differed across the three morphological classes in the hyperfused condition, the mean standard 
deviation (S.D.) of the intensity was computed, revealing a statistically significant elevation in fluctuations of the 
intensity of the swollen mitochondria (Fig. 5H). This shows greater variation in sub-organelle intensity within 
the swollen mitochondria, which may be due to increased structural disorganization allowing greater movement 
of proteins.

Characterization of the mechanism of selenium-induced mitochondrial swelling.  In another 
toxicological application of MitoMo, we analyzed the effects of selenium, a contaminant in some tobacco prod-
ucts35,36, on mitochondrial health. Lung A549 cells were transfected with the MitoTimer reporter (Fig. 6A) and 
treated for 24 hours with 0.01 mM or 0.1 mM selenium tetrachloride (SeCl4) (Fig. 6B). MitoMo analysis of mito-
chondrial morphology showed a significant increase in the swollen phenotype (Fig. 6C) at the 0.1 mM concen-
tration, and a significant dose-dependent increase in the oxidation of mitochondrial proteins (Fig. 6D) (both 
statistical analyses were done using a 1-way ANOVA with Dunnett’s post hoc test). Motion analysis demonstrated 
a significant decrease in mitochondrial motility in selenium treated cells when compared to controls (2-way 
ANOVA with Bonferroni’s multiple comparisons test) (Fig. 6E). Texture analysis using an unpaired two-tailed 
t-test showed that lacunarity decreased, consistent with the denser organization caused by mitochondrial swelling 
(Fig. 6F). Double labeling with a GFP-LC3 (microtubule-associated protein light chain 3a) autophagy reporter 
and MitoTracker dye demonstrated that the swollen mitochondria co-labeled with autophagosomes, indicating 
their targeted degradation via mitophagy (Fig. 6G,H).

Mitochondrial morphogenesis during swelling in selenium treated A549 cells.  MitoMo was used 
to analyze mitochondrial morphogenesis during treatment of A549 cells with 0.1 mM selenium in time-lapse vid-
eos collected every hour. By approximately 4 hours of treatment, mitochondrial morphology had changed from a 
primarily networked phenotype (Fig. 7A) to small rings (yellow arrows in Fig. 7B–D). Mitochondrial morphol-
ogy progressed to the punctate phenotype (blue arrows in Fig. 7D), and approximately 1 hour later the punctate 
mitochondria expanded to form the swollen morphology (green arrows in Fig. 7E,F). Progression to the swollen 
morphology is shown quantitatively in the graphs for selenium-treated cells (Fig. 7J). Control cells (Fig. G–I) were 
also imaged every hour, and their morphologies remained primarily networked over time (Fig. 7K). Statistical 
analysis of both the treated and control groups was done using a 2-way ANOVA with Dunnett’s post hoc test.

Health classification in cells using supervised learning.  A549s cells treated with 0.01 mM of selenium 
were segmented after 24 hours of incubation using their MitoTimer intensity (Fig. 8B). When looking at mor-
phology alone, it was extremely difficult to distinguish the controls from the low-dose treated cells, since both 
exhibited highly networked mitochondria. Therefore, all 21 morphology, intensity, texture, and motion features 
were tested either singly or in combination to distinguish the control and treated groups using three classifier 
algorithms: discriminant analysis37, K-Nearest Neighbor (KNN)29, and error correcting38 (Fig. 8C). KNN out-
performed the other two classifiers in most cases, although the error correcting method had the potential to do 
well when there were multiple features. One feature alone resulted in maximum accuracy of 68% for morphology, 
61% for motion, and 65% for texture. By combining four features, we were able to increase accuracy to 86%. This 
demonstrates that MitoMo allows accurate classification of cellular stress that was not distinguishable by visual 
inspection of mitochondrial morphology.

Discussion
Machine learning and automated analysis of still and video data are important components of modern light 
microscopy39. Software is needed that has the capability of extracting biologically relevant data from images in 
a reliable, unbiased, and rapid manner. MitoMo has a user-friendly interface, is open source (see Methods), and 
could be used to analyze any type of mitochondrial morphology given user-input trained libraries. Our segmen-
tation is versatile (allows import of pre-segmented images) and has tunable image processing parameters allowing 
for high accuracy. While other mitochondrial programs often analyze a limited number of features15,16,19–23,26, 
MitoMo enables a deep level of analysis that integrates morphology, texture, motion, morphogenesis, and cell 
health classification into a single program. This is important, since features that appear uninformative by them-
selves can be highly relevant if combined with other features. MitoMo is the only machine-learning software that 
provides both mitochondrial morphological classification and cell health classification based on mitochondrial 
features. MitoMo incorporates both still and video image analysis making morphogenesis and dynamic analyses 
possible with a single software program. While our data were analyzed using deconvoluted fluorescent images, 
confocal, super resolution and holotomographic images could also be used with MitoMo and may be easier to 
segment given their higher resolution.

Mitochondria have been used to study a variety of biological problems such as stress response22,23, drug res
ponse16,18,22,40,41, classifying cell types19 and disease states15,21. MitoMo has all of these analytical capabilities, but 
with a greater number of feature types allowing deeper analysis. For instance, when morphology alone was not 
adequate to distinguish different cell types, clear segregation of cells types was possible with texture analysis 
(Fig. 3I). This was shown in the case of hPFs and A549s, where both exhibited networked mitochondria but could 
be distinguished using texture features. Previously, stress responses were studied using morphology (e.g. hyper-
fusion or mitophagy-induced morphological changes). For example, we and others have shown that stressors 
such UV, antibiotics, and environmental toxicants can cause mitochondrial hyperfusion6,8. Here, we show that 
stress-induced mitochondrial hyperfusion is also accompanied by an increase in motion.
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Changes in mitochondria morphology and dynamics can correlate with mitochondrial function, as well as 
with various types of stimuli. For instance, mitochondria are transported to sites of energy demand42 and changes 
in mitochondrial morphology correlate with permeability and respiratory functions24. Here, we showed that 
stress induced mitochondrial hyperfusion occurred in NSCs treated with electronic cigarette aerosol. We know 
from previous observations that this survival response correlates with increased production of ATP6,8, a hallmark 
function of mitochondria, as well as an increase in ROS, which could be damaging to the cell. Since NSC are crit-
ical for post-natal brain development43, stress to their mitochondria would be a concern for normal functioning 
of these cells and corresponding tissue. Moreover, we show that response to EC aerosol-induced stress results in 
an increase in mitochondrial protein oxidation using intensity feature analysis of MitoTimer reporter. MitoMo 
goes beyond traditional intensity analysis to include features to measure how intensity values fluctuate (higher 

Figure 6.  Analysis of swollen mitochondria in selenium treated A549 cells. (A,B) Treatment of MitoTimer-
transfected A549 cells with 0.1 mM SeCl4 changed mitochondrial shape from networked to swollen and 
increased mitochondrial protein oxidation (increase in orange/red fluorescence). (C) Selenium treatment cells 
produced a dose dependent increase in the swollen mitochondria (1-way ANOVA with Dunnett’s multiple 
comparisons test). (D) The MitoTimer red/green fluorescence ratio showed a dose-response increase in 
mitochondrial protein oxidation in the selenium treated A549 cells (1-way ANOVA with Dunnett’s multiple 
comparisons test). (E) Motion decreased in the swollen mitochondria in the selenium treated group (2-
way ANOVA with Bonferroni’s multiple comparisons test). (F) Lacunarity decreased in the treated, swollen 
mitochondria (unpaired two-tailed t-test). (G,H) Double labeling with GFP-LC3 showed that the mitochondria 
in selenium treated cells, but not in control cells, were co-localized with autophagosomes, indicating their 
targeted degradation.
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in swollen mitochondria, shown in Fig. 5H), which expand intensity analysis to the study of dynamics. Any 
mitochondrial-targeted dye or reporter could be used with MitoMo to quantify functional readouts.

MitoMo’s novel intensity flow method for motion analysis bypasses the limitations of traditional object track-
ing and optical flow motion analysis. Because MitoMo uses a pixel-based method, it is particularly powerful at 
quantifying mitochondrial motion when mitochondria are not trackable (e.g., when they exist in networks). 
Also, when movement of entire mitochondria is arrested (as in the case of selenium-induced toxicity), motion 
within the mitochondria can still be assessed using MitoMo. Also, MitoMo circumvents the brightness over time 
constraint of optical flow, resulting in significantly higher angle and magnitude accuracies in 4 out of 6 synthetic 
motion conditions. Also, our software can evaluate direction of both intact mitochondria with respect to any cel-
lular structure and directional motion within the mitochondria. Directional motion of mitochondria can be use-
ful when mitochondria are reorganized, such as during perinuclear clustering, which could be an early biomarker 
of cell stress44,45. In addition, directional analysis can be used to detect motion heterogeneity in mitochondrial 

Figure 7.  Mitochondrial morphogenesis in A549 cells during selenium treatment. (A–F) Time-lapse videos of 
0.1 mM selenium-treated MitoTimer-transfected A549 cells were collected over several hours. The networked 
mitochondria first formed small tubes and donuts (yellow arrows in B–D), followed by fragmentation into the 
punctate morphology (blue arrows in D), before eventually expanding to form the swollen phenotype (green 
arrows in E,F) after approximately 5 hours of time. (G) The selenium-treated cells had an increase in the swollen 
mitochondria after 4 hours. (H) Control videos were also collected over several hours, and mitochondrial 
morphology did not change over time. Statistical analysis for (G and H) were done using a 2-way ANOVA with 
Dunnett’s multiple comparisons test.
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distribution and translocation inside a cell. MitoMo was used to show direction of movement to/away from the 
nucleus and alteration of that movement following drug treatment. Although not shown in this paper, the ability 
of MitoMo to analyze intra-organelle motion can be applied to show flow of mtDNA or specific mitochondrial 
proteins.

MitoMo was able to evaluate morphogenesis of mitochondrial swelling and eventual mitophagy, which 
occurred during selenium-induced stress46–48. Selenium has been implicated in mitochondrial toxicity49,50 and 
is found in some tobacco products, including electronic cigarette fluids and aerosols35,36. A549 cells treated with 
selenium transitioned from the networked to punctate morphology consistent with fission, a process that is 
needed to segregate dysfunctional mitochondria for culling by mitophagy51. The punctate mitochondria then 
became swollen, likely due to increases in mtROS52 (shown in Fig. 6B,D). This is consistent with inhibition of the 
respiratory chain and the loss of mitochondrial membrane potential (MMP) following metal or selenium treat-
ment53. Our data provide clear evidence that treatment of a cancer cell line with 0.1 mM selenium adversely affects 
mitochondria and may be a mechanism contributing to treatment of cancer with selenium54. It will be important 
in future work to determine if selenium has similar adverse effects on normal cells, as such effects would impair 
health.

Phenotyping with MitoMo also provides the information needed to classify healthy and unhealthy cells. As 
shown previously, mitochondrial phenotyping based on texture can distinguish different types of cancer cells and 
their response to drugs15,16,21. As shown in Fig. 8, health classification with MitoMo can identify subtle changes in 
mitochondria and was useful in discovering stress that was not detectable by examining mitochondrial morphol-
ogy, texture, or motion alone. Subtle sub-organelle changes have traditionally been observed using ultra-high res-
olution techniques, such as transmission electron microscopy (TEM)55,56; however, mitochondrial analysis at this 
scale does not allow for whole-cell phenotyping, is extremely time-consuming, and is limited to fixed cells. Early 
detection of mitochondrial stress has many applications including high-throughput drug testing, toxicology, and 
any biological research involving mitochondria.

Mitochondrial health plays an important role in many diseases, including neurodegenerative diseases such 
as Parkinson’s, Huntington’s, and Alzheimer’s11,57, metabolic disorders7, cancer54,58,59, and mitochondria myo-
pathies11,57. Although not shown in this paper, MitoMo could be used to identify early biomarkers of specific 
disease by deep analysis of mitochondria from easy to obtain human biopsies, such as blood, urine, saliva, and 
skin. Moreover, there are numerous applications of MitoMo to disease-in-a-dish models in which changes in 
mitochondrial morphology, motion, and texture could be studied against control cells during disease progression. 
MitoMo could also be used to study the morphology and dynamics of other organelles, such as peroxisomes and 
autophagosomes/lysosomes, which have important links to disease. MitoMo can be used with any cell type and 
expanded to study the dynamics of any organelle.

Figure 8.  Health classification of A549 cells in “Undetectable stress” conditions. (A,B) Treatment of 
MitoTimer-transfected A549 cells with 0.01 mM SeCl4 did not visibly change their networked morphology  
(C), however, health classification could distinguish treated from control cells by combining different 
feature types. (C) Using a single morphology, motion, or texture feature at best resulted in a 68% accuracy in 
distinguishing the control and treated groups. Combining feature types resulted in up to 86% accuracy for 
KNN, 85.5% for error correcting method, 83.5% for discriminant analysis. Morphology features are numbered 
1–11, and 22 and highlighted in light yellow. Intensity features are numbered 12–14 and highlighted in dark 
yellow. Motion features are numbered 15–18 and highlighted in light blue. Texture features are numbered 19–21 
and highlighted in dark blue.
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In summary, MitoMo has immediate and broad utility in cell biology, drug discovery, toxicology, and medi-
cine in that it permits deep quantitative evaluation of mitochondrial morphology, motion, texture, morphogene-
sis, and cell health classification in an accessible integrated software package.

Materials and Methods
Cell culturing and reagents.  NSC (line C17.2, provided by Dr. Evan Snyder’s lab) were grown as previously 
described6. A549 lung epithelial cells (human type II pulmonary alveolar adenocarcinoma cells) were obtained 
from ATCC. Cells were cultured in F-12K medium (Kaighn’s Modification of Ham’s F-12, ATCC #30-2004) 
and 10% fetal bovine serum (ATCC #30-2020). Cells were incubated at 37 °C in 5% CO2 until 80% confluency, 
at which point they were detached using 0.25% trypsin. Cells were passaged every 2–3 days and medium was 
replenished every other day. Human pulmonary fibroblasts (hPF) (obtained from ScienCell) were cultured in 
complete fibroblast medium (ScienCell) containing 2% fetal bovine serum, 1% fibroblast growth serum, and 1% 
penicillin/streptomycin. hPF were grown on poly-L-lysine (2 μl/1 ml) coated T-25 flasks, which were prepared 
a day in advance of use in experiments. hPF were cultured in 5% CO2 at 37 °C and 95% relative humidity until 
70–80% confluent. For sub-culturing and experimental set up, cells were washed with DPBS and detached with 
0.05% trypsin diluted in DPBS for 1 minute at 37 °C.

Live cell imaging.  For live imaging, cells were plated on µ-Slide Ibidi 8-well chambers (Ibidi) at approx-
imately 6,000 cells/well. Time-lapse fluorescent images were collected using a TI inverted Nikon Eclipse 
microscope equipped with a LiveCell temperature and CO2-regulating, heated stage (Pathology Devices Inc). 
The images were collected using a Nikon 60 × 0.85 NA objective with a 0.11 um/pixel resolution, and a Nikon 
40 × 0.75 NA and 60 × 1.4 NA objectives with 0.16 and 0.11 µm/pixel resolutions respectively. A high-resolution 
Andor Zyla VSC-04941 camera (Andor, Belfast, UK) was used. Excitation illumination was from the Nikon 
INTENSILIGHT C-HGFIE lamp. Videos were collected at millisecond resolution and deconvoluted using the 
“live de-blur” feature of the NIS Elements software (Nikon).

Transiently transfected and reporter cells and labeling of mitochondria.  NSC were cul-
tured, detached enzymatically, and centrifuged for 3 minutes at 3,000 rpm. The pellet containing 6 × 106 
cells was re-suspended in Nucleofection medium (Lonza Kit #VAPG-1004) and nucleofected in the Amaxa 
Nucleofector IIb device (Lonza) using program A-033. The cells were quickly transferred to a new dish con-
taining pre-equilibrated fresh medium, and selected with hygromycin at an optimal kill dose of 150 µg/ml. The 
medium and hygromycin treatment was replenished every other day for 30 days. The Mito-Timer-transfected 
NSC were further enriched with FAC Sorting (FACS Aria) using GFP (488 nm Argon laser, 530/30 filter) and 
DsRed (488 nm Argon laser, 610/20 filter) signals. A549 and hPF cells were transiently transfected using DNA-In 
reagents (MTI-GlobalStem #73770 and 73750). The Addgene plasmids (pMitoTimer #52659 and pEGFP-LC3 
#21073) were used to transfect the cells. A549 cells were co-labeled with MitoTracker-Red dye (ThermoFisher 
Scientific #M7512) to visualize mitophagy.

Quantification of mitochondrial texture and motion using MitoMo.  By computing the change in 
intensity of fluorescently-labeled mitochondria between adjacent frames, the flow of mitochondrial proteins can 
be estimated at the individual pixel level. To do this, a difference image Dt,t+1 was computed as,

= −+ +D I I ,t t t t, 1 1

where It is the image at time t. Negative values in Dt,t+1 represent a decrease in intensity at that pixel location, 
while positive values represent an increase. Dt,t+1 shows a change in the density of fluorescent tags over time. To 
visualize these changes, Dt,t+1 is rescaled with the equation,
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so that the pixel values are between 0 and 1. To filter out background motion and motion in other structures, a 
region of interest is estimated for each difference image. MitoMo used an adaptive Otsu’s segmentation60 on each 
frame to segment the structures of interest. The region of interest for each difference frame is defined as,
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where St is Otsu’s segmentation output at time t. Using +
′Dt t, 1 and ROIt,t+1, motion vectors in the image sequence 

are computed with the following gradient equation:

δ
δ

δ
δ

∇ = + = + .+
′ +

′
+

′

ˆ ˆ ˆ ˆD
D

x
x

D
y

y ux vyt t
t t t t

, 1
, 1 , 1
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While vectors can be analyzed individually, they may be combined over a region of interest. For every mito-
chondrion, vector addition is performed on the vectors that lay within the segmented mitochondrion. For the 
whole-cell level, vector addition is performed on all the vectors within the cell. This produces a single vector 
representing the motion of that mitochondria or cell. In addition to the generated motion vectors, other features 
are extracted for each level of analysis. While basic morphological and intensity features are examined, texture 
features are of interest as they can analyze density of visual patterns. A differential box counting method was used 
to compute the fractal dimension61 of a region around a pixel. Fractals are self-repeating patterns whose complex-
ity can be represented by their dimension and density by their lacunarity62.

Segmentation and classification of mitochondrial morphology using MitoMo.  MitoMo was 
used to segment the red fluorescent channel from MitoTimer-transfected cells. Pre-segmented images were 
also imported from CellProfiler software. Histogram matching63 was performed on each video using a reference 
video to control intensity levels. Thresholding was performed using a global Otsu’s method60, and morphological, 
intensity, texture, and motion features were extracted for each segmented mitochondrion. Because segmented 
regions may be clustered together after thresholding, a watershed algorithm64 was used to de-clump the seg-
mented regions. This is done by finding the regional maximal intensities of each segmented region and computing 
a boundary that best separates the maxima. The extracted features were fed to supervised learning algorithms 
KNN and Naïve Bayes written on the MATLAB platform. The software was trained with image libraries of each 
morphological type (punctate, networked, swollen). An exhaustive search was carried out to identify key features 
and combinations that allowed accurate morphology-based classification. The experimental datasets were ana-
lyzed by the classifiers to determine the total area of each morphological subpopulation, which was normalized 
by the total mitochondrial area in each cell and averaged across all cells within each group.

Health classification of “stressed” cells.  MitoMo was used to segment the red fluorescence channel 
from MitoTimer-transfected cells. Histogram matching was done for every frame of the video with reference to 
the “before” (Time = 0) video of the dataset, and segmentation was performed. Since classification of stressed 
cell conditions is done at the video scale, video features are found by computing the mean (average) of the fea-
ture value over the entire length of video. These features were previously extracted for mitochondrial analysis. 
Morphology, intensity, texture, and motion features were tested either singly or in combination to distinguish the 
two treatment conditions using three classifier algorithms: discriminant analysis, K-Nearest Neighbor (KNN), 
and error correcting output codes classifier.

Statistical analysis.  For each set of data, three independent experiments were performed. Data were 
graphed and analyzed statistically using Prism software (GraphPad) as described in the figure legends. Data were 
considered to be significantly different for p < 0.05.

Source Code and Executable Files.  MitoMo was written and developed with MATLAB 2018a. The source 
code and an executable GUI are available online at http://vislab.ucr.edu/SOFTWARE/software.php. MitoMo.m is 
the main file of the code and requires the following MATLAB toolboxes: System Identification, Image Processing, 
Statistics and Machine Learning, and Bioinformatics. The executable requires the installation of the 64-bit version 
of MATLAB Runtime R2018a (9.4) available at http://www.mathworks.com/products/compiler/mcr/.

Data Availability
All relevant data are available within the manuscript. The source code for MitoMo and an executable GUI are 
available at http://vislab.ucr.edu/SOFTWARE/software.php.
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